Abstract geometrical computation with accumulations: Beyond the Blum, Shub and Smale model

نویسنده

  • Jérôme Durand-Lose
چکیده

geometrical computation with accumulations: Beyond the Blum, Shub and Smale model

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract geometrical computation: beyond the Blum, Shub and Smale model with accumulation

geometrical computation: beyond the Blum, Shub and Smale model with accumulation

متن کامل

The Real Dimension Problem Is Np R -complete Ecole Normale Supérieure De Lyon the Real Dimension Problem Is Np R -complete R Esum E the Real Dimension Problem Is Np R -complete

We show that computing the dimension of a semi-algebraic set of R n is a NP R-complete problem in the Blum-Shub-Smale model of computation over the reals. Since this problem is easily seen to be NP R-hard, the main ingredient of the proof is a NP R algorithm for computing the dimension. On montre que le calcul de la dimension d'un ensemble semi-alg ebrique de R n est un probl eme NP R-complet d...

متن کامل

On the relations between dynamical systems and boolean circuits

We study the computational capabilities of dynamical systems de ned by iterated functions on n The computations are performed with in nite precision on arbitrary real numbers like in the model of analog computation recently proposed by Hava Siegelmann and Ed uardo Sontag We concentrate mainly on the low dimensional case and on the relations with the Blum Shub Smale model of computation over the...

متن کامل

The Real Dimension Problem

We show that computing the dimension of a semi-algebraic set of R n is a NP R-complete problem in the Blum-Shub-Smale model of computation over the reals. Since this problem is easily seen to be NP R-hard, the main ingredient of the proof is a NP R algorithm for computing the dimension.

متن کامل

Complexity and Dimension

Mahaney’s Theorem states that there are no sparse NP-complete problems if P # NP. We propose an adaptation of that theorem to the Blum-Shub-Smale model of computation of the reals with addition and equality. In that setting, sparseness is defined in terms of topological dimension instead of cardinality. @ 1997 Elsevier Science B.V.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017